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(ii) Performance
By construction, a Bayes estimator minimizes the posterior expected loss and,
hence, the Bayes risk. Often, however, we are interested in its performance,
and perhaps optimality under other measures. For example, we might examine
its mean squared error (or, more generally, its risk function) in looking for
admissible or minimax estimators. We also might examine Bayesian measures
using other priors, in an investigation of Bayesian robustness.

These latter considerations tend to lead us to look for either manageable expres-
sions for or accurate approximations to the integrals in (3.5). On the other hand,
the considerations in (i) are more numerical (or computational) in nature, leading
us to algorithms that ease the computational burden. However, even this path can
involve statistical considerations, and often gives us insight into the performance
of our estimators.

A simplification of (3.5) is possible when dealing with independent prior dis-
tributions. If Xi ∼ f (x|θi), i = 1, · · · , n, are independent, and the prior is
π (θ1, · · · , θn) =

∏
i π (θi), then the posterior mean of θi satisfies

E(θi |x1, . . . , xn) = E(θi |xi),(3.6)

that is, the Bayes estimator of θi only depends on the data through xi . Although
the simplification provided by (3.6) may prove useful, at this level of generality it
is impossible to go further.

However, for exponential families, evaluation of (3.5) is sometimes possible
through alternate representations of Bayes estimators. Suppose the distribution of
X = (X1, . . . , Xn) is given by the multiparameter exponential family (see (1.5.2)),
that is,

pη (x) = exp

{
s∑

i=1

ηiTi(x) − A(η )

}
h(x).(3.7)

Then, we can express the Bayes estimator as a function of partial derivatives with
respect to x. The following theorem presents a general formula for the needed
posterior expectation.

Theorem 3.2 If X has density (3.7), and η has prior density π (η ), then for j =
1, . . . , n,

E

(
s∑

i=1

ηi

∂Ti(x)

∂xj

|x
)

=
∂

∂xj

log m(x) − ∂

∂xj

log h(x),(3.8)

where m(x) =
∫

pη (x)π (η ) dη is the marginal distribution of X. Alternatively,
the posterior expectation can be expressed in matrix form as

E (T η ) = ∇ log m(x) − ∇ log h(x),(3.9)

where T = {∂Ti/∂xj }.
Proof. Noting that ∂ exp{∑ ηiTi}/∂xj =

∑
i ηi(∂Ti/∂xj ) exp{∑ ηiTi}, we can

write

E

(∑
ηi

∂Ti(x)

∂xj

|x
)

=
1

m(x)

∫ ∑
i

[
ηi

∂Ti

∂xj

]
e�ηiTi−A(η )h(x)π (η ) dη


