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Abstract
In this work, an inverse undesirable center location

problem is considered in which our goal is to modify the
edge lengths of the underlying graph within given bounds
at the minimum total cost such that a predetermined
point of the graph becomes an undesirable center location
under the new edge lengths. The cost is proportional
to the increase or decrease, resp., of the edge length.
The total cost is defined as sum of all cost incurred by
length modifications . A novel combinatorial algorithm
with linear time complexity is developed for obtaining an
optimal solution of this inverse location model.

INVERSE UNDESIRABLE CENTER LOCATION
OPTIMIZATION ON GRAPHS

BEHROOZ ALIZADEH

2010 Mathematics Subject Classification. Primary 90C27; Secondary
90B80,90B85.

Key words and phrases. Combinatorial optimization, facility location, inverse
optimization.

0



INVERSE UNDESIRABLE CENTER LOCATION OPTIMIZATION 1

1. Introduction

Undesirable facility location problems are basic models in location
theory in which customers no longer consider the facilities desirable,
but attempt to have them as far away as possible from their own
locations. Examples of such facilities include nuclear reactors, mili-
tary installations, stadiums. Two well-known models in undesirable
location optimization are the undesirable center and the undesirable
median problems.

Whereas in the undesirable center problem the task is to find
the best location of one or more facilities such that the minimum
(weighted) distance between customers and the closest facility is
maximized ( see e.g. [?], [?]), the goal for an inverse undesirable lo-
cation problem is to modify specific parameters (like edge lengths)
of a given undesirable location problem in the cheapest possible way
subject to certain modification bounds such that one or more pre-
specified locations become optimal under the new parameter values.
To the best of our knowledge, inverse undesirable center location
problems have not been investigated until now. Within the context
of desirable models, however, the NP -hardness of the inverse center
location problem with edge length modification on directed graphs
was proved by [?]. Later, Alizadeh et al. [?], [?] developed ex-
act algorithms for variants of the inverse absolute and vertex center
location problems on trees.

In this paper, we consider the inverse undesirable center location
problem with edge length modification on graphs and propose a new
linear algorithm which is based on a modified binary search manner.

2. The undesirable center location problem and its
inverse model

Let G = (V (G), E(G)) be an undirected graph with vertex set
V (G) and edge set E(G). Every edge e ∈ E(G) has a positive
length ℓ(e). Let dℓ(u, v) denote the shortest path distance between
two vertices u and v under the edge lengths ℓ. It is said that point
p lies in graph G, p ∈ G, if p coincides with a vertex or lies on an
edge e = uv with endpoints u, v ∈ V (G). The undesirable center
location problem on G asks for an optimal solution to

maximize min
v∈V (G)

dℓ(v, p) (2.1)

subject to p ∈ G.
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An optimal solution p∗ of problem (??) is called an undesirable cen-
ter location on the given graph G. The undesirable centers of G
can be obtained in O(|E(G)|)-time according to the following basic
lemma.

Lemma 2.1. (optimality criterion)
For an unweighted graph G, the midpoint of a diameter edge is an
undesirable center location.

In contrast to the classical undesirable center problem (??), the
inverse undesirable center location problem on a graph is stated as
follows: Let a graph G = (V (G), E(G)) with positive edge lengths
ℓ(e), e ∈ E(G), be given. Let s be a prespecified interior point
(i.e., s /∈ V (G)) on a specific edge es of G which divides es into two
edge-segments es1 and es2 satisfying

ℓ(es1) + ℓ(es2) = ℓ(es) , es1 ∩ es2 = {s} , ℓ(es2) ≤ ℓ(es1).

We want to modify the edge (and edge-segment) lengths in the
cheapest possible way such that the prespecified point s becomes
an undesirable center location under the modified edge lengths. Let
Ê = {es1, es2} ∪ E(G)\{es}. Suppose that we incur the nonnegative

cost c+(e) if ℓ(e), e ∈ Ê, is increased by one unit and we incur the
nonnegative cost c−(e) if ℓ(e) is reduced by one unit. Moreover,
we are not allowed to modify the lengths arbitrarily. Therefore, let
u+(e) and u−(e) be the maximum permissible amounts by which

length ℓ(e), e ∈ Ê, can be increased and reduced, respectively. We
can now state the inverse undesirable center location problem (IOCP
for short) on G as follows:

Modify the lengths ℓ(e), e ∈ E ∪ {es1, es2}, to ℓ̃(e) such that the
following three statements (i), (ii) and (iii) are satisfied:

(i) The prespecified point s becomes an undesirable center lo-

cation on graph G with respect to new lengths ℓ̃.
(ii) The cost function∑
e∈Ê

(
c+(e)max{0, ℓ̃(e)− ℓ(e)}+ c−(e)max{0, ℓ(e)− ℓ̃(e)}

)
for changing the edge lengths on G is minimized.

(iii) The new edge (or edge-segment) lengths lie within the given
modification bounds

−u−(e) ≤ ℓ̃(e)− ℓ(e) ≤ u+(e) for all e ∈ Ê.

We are now going to present briefly our solution method.
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3. Optimal solution approach

According to Lemma ??, our generic solution idea for solving
IOCP is as follows: Either increase or reduce the lengths ℓ(e), e ∈ Ê,
at minimum total cost subject to the given modification bounds
u−(e) and u+(e) such that the equalities

ℓ̃(es) = max{ℓ̃(e) : e ∈ Ê} , ℓ̃(es1) = ℓ̃(es2)

are satisfied. Note that an optimal modification of IOCP may ei-
ther reduce or increase the length ℓ(es1) . Hence we have to take into
consideration both of these cases.

Case 1. The length ℓ(es1) is increased in an optimal solution of
IOCP.

In this case, both lengths ℓ(es1) and ℓ(es2) are to be increased and
the other lengths ℓ(e), e ̸= es, may be reduced. We have shown that
in the current case the solution of IOCP is reduced to the solution
of the nonlinear programming problem

min f(z) =

(
2∑

i=1

c+(esi )

)
(
1

2
z − ℓ(es1)) +

∑
e: ℓ(e)≥z

c−(e) (ℓ(e)− z)

s.t.
1

2
z − ℓ(es1) ≤ min{u+(es1), u

+(es2)}, (3.1)

ℓ(e)− z ≤ u−(e) for all e ∈ Ê with ℓ(e) ≥ z,

2ℓ(es1) ≤ z ≤ max{2ℓ(es1) , ℓ(e) ; e ∈ Ê},

where we have 1
2
z = ℓ̃(es1). We have constructed a new procedure

which solve the problem (??) in O(|E(G)|) time.

Case 2. The length ℓ(es1) is reduced in an optimal solution of IOCP.

In this case, length ℓ(es2) may be increased and the lengths ℓ(es1)
as well as ℓ(e), e ̸= es may be reduced. In an analogous way, the
solution of IOCLP is also reduced to the optimal solution of a specific
nonlinear program which can be solved in O(|E(G)|) time.

From the optimal solution of the mentioned nonlinear programs
with smaller objective value, an optimal solution for IOCP is de-
rived.

Altogether, we get

Theorem 3.1. The inverse undesirable center location problem can
be solved in O(|E(G)|)-time on a graph.
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Abstract
This article considers two problems, the first one is

the inverse Fermat-Weber problem, provided the Euclidean
1-median is a vertex and the second one is the inverse 1-
maxian problem on cycles. For any two problems, the
aim is to change the vertex weights at minimum total
cost with respect to given modification bounds such that
a prespecified vertex becomes 1-median. If the prespeci-
fied point coincides with one of the given n points in the
plane, it is shown that the corresponding inverse problem
can be written as convex problem and hence is solvable
in polynomial time to any fixed precision. We show that
the inverse 1-maxian problem on a cycles with positive
edge-lengths and unit cost can be solved in O(n2)-time.

4. Introduction

In recent years inverse optimization problems found an increased
interest. The inverse optimization problem consists in changing pa-
rameters of the problem at minimum cost such that a prespeci-
fied solution becomes optimal. Recently, inverse p-median problem
has been investigated by Burkard, Pleschiutsching and Zhang [?].
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They showed that the discrete inverse p-median problem with real
weights can be solved in polynomial time provided p is fixed and not
an input parameter. They presented a greedy-like O(n log n)-time
algorithm for the inverse 1-median problem in the plane provided
the distances between the points are measurde in the Manhattan
or maximum metric. Also, they showed that the inverse 1-median
problem on a cycle with positive vertex weights can be solved in
O(n2) time. The inverse Fermat-Weber problem was studied by
Burkard, Galavii, and Gassner [?]. The authors derived a combi-
natorial approach which solves the problem in O(n log n)-time for
unit cost and under the assumption that the prespecified point that
should become a 1-median does not coincide with a given point in
the plane. Galavii [?] showed that the inverse 1-median problem on
a tree with positive weights can be solved in linear time. In this
paper we investigate the inverse Fermat-Weber problem on a plane,
provided the Euclidean 1-median is a vertex and also the inverse
1-median problem on cycles with negative weights.

5. The inverse Fermat-Weber problem on a plane with
vertex 1-median

Given n points P1, P2, ..., Pn in a metric space (X, d) and positive
weights w1, w2, ..., wn the 1-median problem asks for a point P ∈ X
which minimizes

n∑
i=1

wid(Pi, P ).

In the inverse 1-median problem a point P0 is given in addition to the
points P1, P2, ..., Pn. The weight of these points have to be modified
within given bounds [wi, wi] such that P0 becomes a 1-median and
the sum of weight changes [or: the cost for the weight changes] is as
small as possible.

Definition 5.1. If P0 ̸= Pi for all i = 1, 2, ..., n the resultant force
R(P0) at P0 given by:

R(P0) :=
n∑

i=1

wi

d(Pi, P0)
(Pi − P0);

and for Pi = Pj for some j = 1, 2, ..., n,

R(P0) := max(∥Rj∥ − wj, 0)
Rj

∥Rj∥∥
.
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Differential calculus tells that P0 is a 1-median if and only if the
resultant R(P0) = 0. In case that Pi ̸= Pj we can assume that P0

lies in the interior of the convex hull of the points Pi, i = 1, 2, ..., n
and that P0 is the origin. Next we project the given points on the
unit circle. The point P0=(0,0) is a Euclidean 1-median if and only
if

Rx(w) :=
n∑

i=1

wixi = 0,

Ry(w) :=
n∑

i=1

wiyi = 0.

Since the Euclidean distance is invariant with respect to rotation
and reflection, we can always assume that

Rx(w) = 0,

Ry(w) ≤ 0.

If Ry(w) = 0, then the weights wi, i = 1, 2, ..., n, provide an optimal
solution. By this assumptions, in the case that Pi ̸= Pj, it is shown
that by Burkard, Galavii and Gassneer [?] that the inverse Fermat-
Weber problem can be solved in O(n log n) time.

Now we consider the case that the prespecified point coincides
with one of the given points. We have the following result.

Theorem 5.2. P0 is the optimal location if and only if

w2
0 ≥

( n∑
i=1

wi
xi − x0

d(Pi, P0)

)2

+

( n∑
i=1

wi
yi − y0
d(Pi, P0)

)2

Thus the above Theorem yields point P0 = (0, 0) is 1-median if
and only if

R2
x(w) +R2

y(w) ≤ w2
0

holds. This condition does not lead to a convex problem. However,
it is possible to fix the optimal weight in advance

Lemma 5.3. There exists an optimal solution w∗ with

w∗
0 = min{w0,

√
R2

x(w) +R2
y(w)}.

The above Lemma implies that the weight of P0 can be fixed.
After modifying the weight of P0 the remaining problem is convex
and can be solved by any algorithm for convex programming.

Theorem 5.4. If the prespecified point is one of the given n points,
then an optimal solution (to any fixed precision) of the inverse Fermat-
Weber problem with unit cost can be computed in polynomial time.



6. Inverse 1-median problem on a cycle with negative
vertex weights

For the classical median problem (the vertex weights are posi-
tive)on a network, it has been shown by Hakimi [?] that there always
exists a node which is optimal. That is not the case for the maxian
problem. Church and Garfinkel [?] have studied the 1-maxian prob-
lem on a network. The importance of that paper is that it specifies
a finite set of points containing an optimal solution to the maxian
problem on a network. In the 1-maxian problem we want to lo-
cate one facility such that the sum of positive weighted distances of
clients to the facility is maximized. The objective of the 1-maxian
problem is to find a point x for which

f(x) =
n∑

i=0

wid(x, i) (6.1)

is maximum. As has been shown by Church and Garfinkel [?], there
exists a point x∗ which maximizes (??) such that x∗ ∈ B where B is
the set of bottleneck point of network. Using these facts, the inverse
1-maxian problem on a cycle can be rewrite as a linear program
that has been analyzed by Burkard, Pleschiutschnig, and Zhang [?].
Thus, we have the following Proposition.

Proposition 6.1. The inverse 1-maxian problem on a cycle with
positive edge-lengths and unit cost can be solved in O(n2)-time.
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