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THE INVERSE 1-MEDIAN PROBLEM ON A PLANE
AND ON A CYCLE WITH NEGATIVE WEIGHTS

MOHAMMADREZA GALAVII*

Department of Mathematics, University of Zabol,
P. O. Box 98615-538, Zabol , Iran
galavi@opt.math.tu-graz.ac.at

Abstract

This article considers two problems, the first one is the
inverse Fermat-Weber problem, provided the Euclidean 1-
median is a vertex and the second one is the inverse 1-maxian
problem on cycles. For any two problems, the aim is to
change the vertex weights at minimum total cost with re-
spect to given modification bounds such that a prespecified
vertex becomes 1-median. If the prespecified point coincides
with one of the given n points in the plane, it is shown that
the corresponding inverse problem can be written as convex
problem and hence is solvable in polynomial time to any
fixed precision. We show that the inverse 1-maxian problem
on a cycles with positive edge-lengths and unit cost can be
solved in O(n?)-time.

1. INTRODUCTION

In recent years inverse optimization problems found an increased in-
terest. The tnverse optimization problem consists in changing parame-
ters of the problem at minimum cost such that a prespecified solution
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2 M. GALAVII

becomes optimal. Recently, inverse p-median problem has been in-
vestigated by Burkard, Pleschiutsching and Zhang [2]. They showed
that the discrete inverse p-median problem with real weights can be
solved in polynomial time provided p is fixed and not an input param-
eter. They presented a greedy-like O(nlogn)-time algorithm for the
inverse 1-median problem in the plane provided the distances between
the points are measurde in the Manhattan or maximum metric. Also,
they showed that the inverse 1-median problem on a cycle with positive
vertex weights can be solved in O(n?) time. The inverse Fermat-Weber
problem was studied by Burkard, Galavii, and Gassner [1]. The au-
thors derived a combinatorial approach which solves the problem in
O(nlogn)-time for unit cost and under the assumption that the pre-
specified point that should become a 1-median does not coincide with a
given point in the plane. Galavii [4] showed that the inverse 1-median
problem on a tree with positive weights can be solved in linear time.
In this paper we investigate the inverse Fermat-Weber problem on a
plane, provided the Euclidean 1-median is a vertex and also the inverse
1-median problem on cycles with negative weights.

2. THE INVERSE FERMAT-WEBER PROBLEM ON A PLANE WITH
VERTEX 1-MEDIAN

Given n points Py, Ps, ..., P, in a metric space (X, d) and positive
weights wq, wo, ..., w, the 1-median problem asks for a point P € X
which minimizes

i=1

In the inverse 1-median problem a point P, is given in addition to the
points Py, P, ..., P,. The weight of these points have to be modified
within given bounds [w,, W;| such that Py becomes a 1-median and the
sum of weight changes [or: the cost for the weight changes| is as small
as possible.

Definition 2.1. If Py # P, for all + = 1,2,...,n the resultant force
R(Fy) at Py given by:
R(R) =) =55 (P— R);

and for P, = P; for some j =1,2,...,n,

R(PO) = maX(”‘RJH - wj,()) ||RI||| :
J
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Differential calculus tells that F, is a 1-median if and only if the
resultant R(Fy) = 0. In case that P, # P; we can assume that P lies
in the interior of the convex hull of the points F;, i = 1,2, ..., n and that
Py is the origin. Next we project the given points on the unit circle.
The point Py=(0,0) is a Euclidean 1-median if and only if

R.(w) = zn:wixi =0,
i=1

Ry (w) := Zwiyi = 0.
i=1

Since the Euclidean distance is invariant with respect to rotation and
reflection, we can always assume that

R, (w) =0,

R,(w) <0.
If R,(w) = 0, then the weights w;, i = 1,2,...,n, provide an optimal
solution. By this assumptions, in the case that P; # P;, it is shown that
by Burkard, Galavii and Gassneer [1] that the inverse Fermat-Weber
problem can be solved in O(nlogn) time.

Now we consider the case that the prespecified point coincides with
one of the given points. We have the following result.

Theorem 2.2. P, is the optimal location if and only if

n 2 n 2
2 S L — Xo Yi— Y
= (2 warmy) T\ am
Thus the above Theorem yields point Py = (0,0) is 1-median if and
only if
Ry (w) + Ry(w) < wy
holds. This condition does not lead to a convex problem. However, it

is possible to fix the optimal weight in advance

Lemma 2.3. There exists an optimal solution w* with

w = min{w@y, \/Rg(w) + R2(w)}.

The above Lemma implies that the weight of Py can be fixed. After
modifying the weight of P, the remaining problem is convex and can
be solved by any algorithm for convex programming.

Theorem 2.4. If the prespecified point is one of the given n points,
then an optimal solution (to any fixed precision) of the inverse Fermat-
Weber problem with unit cost can be computed in polynomial time.
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3. INVERSE 1-MEDIAN PROBLEM ON A CYCLE WITH NEGATIVE
VERTEX WEIGHTS

For the classical median problem (the vertex weights are positive)on
a network, it has been shown by Hakimi [5] that there always exists
a node which is optimal. That is not the case for the maxian prob-
lem. Church and Garfinkel [3] have studied the 1-maxian problem on
a network. The importance of that paper is that it specifies a finite set
of points containing an optimal solution to the maxian problem on a
network. In the 1-maxian problem we want to locate one facility such
that the sum of positive weighted distances of clients to the facility is
maximized. The objective of the 1-maxian problem is to find a point
x for which

flz) = Z wid(x, 1) (3.1)

is maximum. As has been shown by Church and Garfinkel [3], there
exists a point z* which maximizes (3.1) such that z* € B where B is
the set of bottleneck point of network. Using these facts, the inverse
l-maxian problem on a cycle can be rewrite as a linear program that
has been analyzed by Burkard, Pleschiutschnig, and Zhang [2]. Thus,
we have the following Proposition.

Proposition 3.1. The inverse 1-mazian problem on a cycle with pos-
itive edge-lengths and unit cost can be solved in O(n?)-time.
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Abstract

In this work, an inverse undesirable center location prob-
lem is considered in which our goal is to modify the edge
lengths of the underlying graph within given bounds at the
minimum total cost such that a predetermined point of the
graph becomes an undesirable center location under the new
edge lengths. The cost is proportional to the increase or
decrease, resp., of the edge length. The total cost is de-
fined as sum of all cost incurred by length modifications . A
novel combinatorial algorithm with linear time complexity
is developed for obtaining an optimal solution of this inverse
location model.

1. INTRODUCTION

Undesirable facility location problems are basic models in location
theory in which customers no longer consider the facilities desirable,
but attempt to have them as far away as possible from their own lo-
cations. Examples of such facilities include nuclear reactors, military
installations, stadiums. Two well-known models in undesirable loca-
tion optimization are the undesirable center and the undesirable median
problems.
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Whereas in the undesirable center problem the task is to find the best
location of one or more facilities such that the minimum (weighted)
distance between customers and the closest facility is maximized ( see
e.g. [4], [5]), the goal for an inverse undesirable location problem is to
modify specific parameters (like edge lengths) of a given undesirable
location problem in the cheapest possible way subject to certain mod-
ification bounds such that one or more prespecified locations become
optimal under the new parameter values. To the best of our knowledge,
inverse undesirable center location problems have not been investigated
until now. Within the context of desirable models, however, the NP
-hardness of the inverse center location problem with edge length mod-
ification on directed graphs was proved by [3]. Later, Alizadeh et al.
[1], [2] developed exact algorithms for variants of the inverse absolute
and vertex center location problems on trees.

In this paper, we consider the inverse undesirable center location
problem with edge length modification on graphs and propose a new
linear algorithm which is based on a modified binary search manner.

2. THE UNDESIRABLE CENTER LOCATION PROBLEM AND ITS
INVERSE MODEL

Let G = (V(G), E(G)) be an undirected graph with vertex set V(G)
and edge set E(G). Every edge e € E(G) has a positive length £(e).
Let d¢(u,v) denote the shortest path distance between two vertices u
and v under the edge lengths /. It is said that point p lies in graph
G, p € G, if p coincides with a vertex or lies on an edge e = uv with
endpoints u,v € V(G). The undesirable center location problem on G
asks for an optimal solution to

maximize vg‘l/l(%) de(v, p) (2.1)
subject to p € G.

An optimal solution p* of problem (2.1) is called an undesirable center
location on the given graph . The undesirable centers of G can be
obtained in O(|E(G)|)-time according to the following basic lemma.

Lemma 2.1. (optimality criterion)
For an unweighted graph G, the midpoint of a diameter edge is an
undesirable center location.

In contrast to the classical undesirable center problem (2.1), the
inverse undesirable center location problem on a graph is stated as
follows: Let a graph G = (V(G), E(G)) with positive edge lengths
l(e), e € E(G), be given. Let s be a prespecified interior point (i.e.,
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s ¢ V(G)) on a specific edge e® of G which divides e® into two edge-
segments e] and e} satisfying
ler) +ex) = €(e”)  erney={s} , ((eg) < L(e).

We want to modify the edge (and edge-segment) lengths in the cheapest
possible way such that the prespecified point s becomes an undesirable
center location under the modified edge lengths. Let E = {e5,e5} U
E(G)\{e*}. Suppose that we incur the nonnegative cost ¢*(e) if £(e),
e € E, is increased by one unit and we incur the nonnegative cost ¢~ (e)
if ¢(e) is reduced by one unit. Moreover, we are not allowed to modify
the lengths arbitrarily. Therefore, let u™(e) and u™(e) be the maximum
permissible amounts by which length ¢(e), e € E, can be increased and
reduced, respectively. We can now state the inverse undesirable center
location problem (IOCP for short) on G as follows:

Modify the lengths ((e), e € E U {e%,e5}, to £(e) such that the
following three statements (i), (ii) and (iii) are satisfied:

(i) The prespecified point s becomes an undesirable center location

on graph G with respect to new lengths /.
(ii) The cost function

3 (c+(e) max{0, {(e) — ()} + ¢ (e) max{0, {(e) — é@)})
eck
for changing the edge lengths on G is minimized.
(iii) The new edge (or edge-segment) lengths lie within the given
modification bounds
—u"(e) < l(e) —l(e) <uT(e) foralleekE.

We are now going to present briefly our solution method.

3. OPTIMAL SOLUTION APPROACH

According to Lemma 2.1, our generic solution idea for solving IOCP
is as follows: Either increase or reduce the lengths ((e), e € F, at
minimum total cost subject to the given modification bounds u~(e)
and u™(e) such that the equalities

((e®) =max{l(e) e € E} , [(e)=1{(e3)
are satisfied. Note that an optimal modification of IOCP may either

reduce or increase the length £(e5) . Hence we have to take into con-
sideration both of these cases.

Case 1. The length ¢(ef) is increased in an optimal solution of IOCP.
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In this case, both lengths ¢(e5) and ¢(e) are to be increased and the
other lengths ¢(e), e # e°, may be reduced. We have shown that in
the current case the solution of IOCP is reduced to the solution of the
nonlinear programming problem

f<z>=<zc+<ef>) G-+ Y @e)-2)

e U(e)>2
st. %z — 0(e3) < min{ut (), ut (e5)}, (3.1)
le)—z<u (e) for all e € F with {(e) > z,
20(e) < z < max{20(e) , l(e) ;e € E},

where we have 2 = 1 (e3). We have constructed a new procedure which
solve the problem (3.1) in O(|E(G)|) time.

Case 2. The length £(e]) is reduced in an optimal solution of IOCP.

In this case, length ¢(e5) may be increased and the lengths ¢(ef) as
well as /(e), e # e®* may be reduced. In an analogous way, the solution
of IOCLP is also reduced to the optimal solution of a specific nonlinear
program which can be solved in O(|E(G)]) time.

From the optimal solution of the mentioned nonlinear programs with
smaller objective value, an optimal solution for IOCP is derived.

Altogether, we get

Theorem 3.1. The inverse undesirable center location problem can be
solved in O(|E(G)|)-time on a graph.
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Abstract
Stochastic programming is a technique for optimization
in the presence of uncertainty which typically leads to very
large problem sizes. Here, we present a modified version of
the L-shaped method and reduce linear master and linear re-
course programs to unconstrained maximization of concave
differentiable piecewise quadratic functions.

1. INTRODUCTION

In mathematical linear programming, matrix of coefficients and vec-
tors are exact values. However, in practice, the problem data are not
definite because of many reasons like error in measurement, incom-
plete information about future and events which have not occurred
yet. In stochastic programming, some data are random variables with
a specific possibility distribution. Before presenting the mathematical
formulation of the two-stage stochastic linear program (SLP) model,
we introduce some notation. Let (2;9; P) be a discrete probability
space and consider = {wy,ws,...,wn} as the set of scenarios with

2010 Mathematics Subject Classification. 90C15, 90C05, 90C20.

Key words and phrases. Two-stage stochastic linear programming, Recourse
problem, L-shaped method, Augmented Lagrangian method.

* Speaker.

* Speaker.

11



12 M. GALAVII, B. ALIZADEH, AND KETABCHI AND BEHBOODI

associated probabilities {p1, ps, ..., pn} such that Zfil pi = 1. In this
paper, consider the following two-stage stochastic linear program (SLP)
with fixed recourse and a finite number of scenarios [2]:

min f(z)=c'v+¢(x), X={zeR":Av=0b2>0}, (1.1)

where
¢(z) = E(Q(z,w)) = ZQ(x,wi)pi,
and )
Q(z,w) = min {g(w)"y | Wy = h(w) = T(w)z , y > 0}.  (1.2)

yeR™2

Here E represents the expectation with respect to w € €. In the sec-
ond stage ¢(.) € R"2, h(.) € R™ and matrix T(.) € R™*" for each
realization w and W € R™*"2 is the recourse matrix which we are
taking here as fixed. Also, in the first stage, A € R™*" ¢ € R™ and
b € R™. In this paper, matrices A and W are assumed to have full row
rank and m << n and my << ng.

The stochastic program (1.1)-(1.2) can be reformulated [2] as the fol-
lowing deterministic equivalent program:

N
. T ~
min cx+ E qiVYi

i=1

st. Ax =0,
EJZ—FWyZ:h“ i:17...,N,
x>0,1>0 i=1,...,N, (1.3)

where T; := T(w;), h; == h(w;),yi = y(w;),q = q(w;) and ¢; = piq;
for each realization w; of the random variable w. Usually N is a very
large number. Hence, the stochastic linear programs (1.1)-(1.2) or (1.3)
can become huge and very difficult to solve. The challenge of solving
such problems has led to many interesting computational and theoret-
ical developments and has provided a motivation for more study. L-
shaped decomposition methods split the original problem into a mas-
ter problem (1.1) and a series of independent subproblems (1.2) for
each w € (). To solve this problem, the LP method has been used
for solving both primal and dual subproblems and master problem in
the L-shaped method. In this paper, we introduce a new method for
SLP(1.1)-(1.2). In this method, we apply the fast algorithm of an aug-
mented Lagrangian method into the L-shaped method to improve the
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speed in solving two-stage stochastic linear program (1.1) with respect
to traditional methods [3].

2. L-SHAPED DECOMPOSITION

The L-shaped decomposition method consists of three main steps:
generating feasibility cuts, optimality cuts and solving the master prob-
lem. In this algorithm, two types of constraints are sequentially added
to linear master problem: feasibility cuts and optimality cuts. To solve
this problem, the LP method has been used for both master and sub-
problems. In [1, 2, 4], the algorithm of linear L-shaped method can be
seen. In this paper, we introduce quadratic L-shaped method in which
unconstrained quadratic program is solved to generate feasibility and
optimality cuts.

3. FEASIBILITY CUT

Feasibility cut tests whether the recourse problem is feasible for
current vector x¥ for all ¢ = 1,..., N or not. If not, this means
that for some i, there is a hyperplane separating h; — T;z” and set
{t |t = Wy,y > 0}. If we name the hyperplane {z | cx = 0}, this
hyperplane must satisfy o7t < 0 for all t € {t | t = Wy,y > 0} and
ol(h; — Tyz¥) > 0.

In this paper, instead of Slyke and Wets method [4], we solve the
following quadratic program

. 1 ,
iy 1 = 5| Wy — (hs = Ta") P, (3.1)

ny
y€R+

1 e1e T . . _ (h=Tz")—Wy
and set the feasibility cut o' ¢ < 0 in which o = T —Toa?) Wyl
4. OpTIMALITY CUT

In this section, we present the augmented Lagrangian method for
solving the recourse subproblem and generating an optimality cut.

Theorem 4.1. [3] Consider the following mazimization problem

max S(p. 3, 9) (4.1
peER™2
wn which B,9 are constants and
X y L. .
S(p, 8,9) = (h=Ta")'p = SII(G + W'p = Ba) |, (4.2)

Also, assume that the solution set Y, of (1.2) is non-empty and the rank
of sub-matriz W, of W corresponding to nonzero components of 3. (the



14 M. GALAVII, B. ALIZADEH, AND KETABCHI AND BEHBOODI

projection of y on Y, ) is ma. In such a case, there is * which for
all B> B*, 9. = (§+ WTp(B) — Bq4)+ where p(B) is the point obtained
from solving (4.1).

5. NUMERICAL RESULTS

The proposed algorithm was applied to solve 3 random generated
SLPs. Table (1) compares quadratic L-shaped method with linear L-
shaped method. We used projection and generalized Newton methods
for (3.1) and (4.1) respectively. Also, linprog function of MATLAB
was used in linear L-shaped method for solving linear programs in
each iteration. As a criterion of the solution accuracy, the Chebyshev
norms of residual vectors were calculated:

N
Ay = | Az—b|lo, Ay = max | Tiw+Wy;—hilloo, As = [T+ Gigi—f7],
i=1
where f* is the optimal value of (1.3). Also, d and d, are the density
of matrices A and W respectively.

TABLE 1. Comparative between quadratic L-shaped
method (QLM) and linear L-shaped method (LLM)

‘ mxnxd ‘ mso X ng X dg ‘ solver ‘ Ay ‘ Ao ‘ As ‘ time ‘
2%50 x 500 x 0.5 | 2*¥100 x 2e3 x 0.1 | QLM | 7.5033e-11 | 6.1846e-11 | 5.0204e-10 | 0.506
LLM | 7.2236e-08 | 3.0177e-09 | 2.1944e-08 | 0.782
2*50 x 500 x 0.5 | 2*¥100 x 2e3 x 0.01 | QLM | 7.2760e-12 | 7.8444e-12 | 2.1828¢-10 | 0.191
LLM | 8.1059e-11 | 1.5726e-08 | 6.3192e-09 | 0.724
2*100 x 1e3 x 0.1 | 2*¥100 x 1e3 x 0.1 | QLM | 8.2537e-11 | 4.8658e-11 | 4.9613e-10 | 0.687
LLM | 4.5475e-12 | 2.2250e-08 | 1.7404e-08 | 0.997
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